Three-space Property for Asymptotically Uniformly Smooth Renormings
نویسندگان
چکیده
We prove that if Y is a closed subspace of a Banach space X such that Y and X/Y admit an equivalent asymptotically uniformly smooth norm, then X also admits an equivalent asymptotically uniformly smooth norm. The proof is based on the use of the Szlenk index and yields a few other applications to renorming theory.
منابع مشابه
Schauder bases under uniform renormings
Let X be a separable superreflexive Banach space with a Schauder basis. We prove the existence of an equivalent uniformly smooth (resp. uniformly rotund) renorming under which the given basis is monotone. Mathematics Subject Classification (2000). 46B03.
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کاملAsymptotic Properties of Banach Spaces under Renormings
A classical problem in functional analysis has been to give a geometric characterization of reflexivity for a Banach space. The first result of this type was D.P. Milman’s [Mil] and B.J. Pettis’ [P] theorem that a uniformly convex space is reflexive. While perhaps considered elementary today it illustrated how a geometric property can be responsible for a topological property. Of course a Banac...
متن کاملStrong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings
In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p
متن کاملModified block iterative procedure for solving the common solution of fixed point problems for two countable families of total quasi-φ-asymptotically nonexpansive mappings with applications
In this paper, we introduce a new iterative procedure which is constructed by the modified block hybrid projection method for solving a common solution of fixed point problems for two countable families of uniformly total quasi-φ-asymptotically nonexpansive and uniformly Lipschitz continuous mappings. Under suitable conditions, some strong convergence theorems are established in a uniformly smo...
متن کامل